Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Microbiol ; 119: 104459, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225037

RESUMO

Lemon essential oil (LEO) is a common natural antibacterial substance, and encapsulating LEO into nanoemulsions (NEs) can improve their stability and broaden its application. Our study aimed to investigate the bacterial inhibitory effect of LEO-NEs against Escherichia coli (E. coli). Results showed that the minimum inhibitory concentration (MIC) of LEO-NEs was 6.25 mg/mL, and the time-kill curve showed that E. coli were significantly killed by LEO-NEs after 5 h of treatment at 1MIC. Flow-cytometry analysis showed that LEO-NEs adversely affected the cell-membrane depolarisation, cell-membrane integrity, and efflux pump function of E. coli. Confocal laser scanning microscopy demonstrated that 8MIC of LEO-NEs induced changes in the cell-membrane permeability and cell-wall integrity of E. coli. Proteomic results suggested that the mode of action LEO-NEs against E. coli was to enhance bacterial chemotaxis and significantly inhibit ribosomal assembly. They may also affect butyric acid, ascorbic acid and aldehyde metabolism, and sulphur-relay system pathways. In conclusion, LEO-NEs had potential application as a natural antibacterial agent for the control of E. coli in the food industry.


Assuntos
Escherichia coli , Óleos Voláteis , Proteômica , Antibacterianos/farmacologia , Óleos Voláteis/farmacologia , Membrana Celular , Bactérias
2.
Fish Shellfish Immunol ; 98: 45-51, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31887410

RESUMO

Vibrio harveyi, a severe pathogen infects different kinds of sea animals, causes huge economic loss in aquaculture industry. In order to control the Vibriosis disease caused mainly by V. harveyi and other Vibrio spp., the best solution lies in developing corresponding efficient vaccines. In this study, we have cloned and analysed a putative antigen TssJ from the T6SS of V. harveyi, which has the potential as a vaccine against infection. The sequence analysis and western blotting experiments indicated that TssJ anchored in outer membrane and there were several antigenic determinants existed on its extracellular region. Two forms of universal vaccines, subunit vaccine and DNA vaccine, were developed based on TssJ and applied in Trachinotus ovatus. The results showed that both of the two vaccines could generate a moderate protection in fish against V. harveyi. The relative percentage survival (RPS) of subunit vaccine and DNA vaccine were 52.39% and 69.11%, respectively. Immunological analysis showed both subunit vaccine and DNA vaccine enhanced acid phosphatase, alkaline phosphatase, superoxide dismutase, and lysozyme activities. Specific serum antibodies against TssJ in the fish vaccinated with subunit vaccine was much higher than that in the DNA vaccine group. Several immune-related genes, i.e., IL10, C3, MHC Iα, MHC IIα, and IgM, were induced both by the two forms of vaccines. TNFα and Mx were only upregulated in the DNA vaccine group. However, the induction levels of these genes induced by DNA vaccine were higher than subunit vaccine. All these findings suggested that TssJ from V. harveyi had a potential application value in vaccine industry.


Assuntos
Antígenos de Bactérias/imunologia , Vacinas Bacterianas/farmacologia , Doenças dos Peixes/prevenção & controle , Vibrioses/veterinária , Vibrio/imunologia , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Peixes , Vacinas de DNA/farmacologia , Vacinas de Subunidades Antigênicas/farmacologia , Vibrioses/imunologia , Vibrioses/microbiologia , Vibrioses/prevenção & controle
3.
Fish Shellfish Immunol ; 94: 880-888, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31562894

RESUMO

The humpback grouper (Cromileptes altivelis) is a commercially valuable species of the family Epinephelidae; however, its marketization suffers from slow growth speed, low survival rate, and various pathogenic diseases. Lactococcus lactis and Schizochytrium limacinum are commonly used as immunostimulants due to their health benefits for the aquatic organisms. In the present study, we assessed the effects of dietary supplementation with L. lactis HNL12 combined with S. limacinum algal meal on the growth performances, innate immune response, and disease resistance of C. altivelis against Vibrio harveyi. The results showed that fish fed with a combination diet of L. lactis and S. limacinum exhibited significantly higher final weight, percent weight gain, and specific growth rate compared with groups fed with them alone. A bacterial challenge experiment indicated that the group fed with the L. lactis combined with S. limacinum diet achieved the highest relative percent of survival value (68.63%), suggesting that L. lactis and S. limacinum significantly improved the disease resistance against V. harveyi after a 4-week feeding trial. Moreover, the respiratory burst activity of macrophages of fish fed with a L. lactis combined with S. limacinum diet was significantly higher than that of fish fed the control diet after 1, 2, and 3 weeks of feeding. The serum superoxide dismutase of fish fed with a L. lactis combined with S. limacinum diet significantly increased compared to those fed the control diet after 1 and 2 weeks of feeding, while the serum alkaline phosphatase of fish fed with a L. lactis combined with S. limacinum diet after 2 and 4 weeks was significantly increased, compared to the control group. The serum lysozyme activities of fish fed with a L. lactis combined with S. limacinum diet significantly increased compared to the control group after 2 weeks of feeding. Furthermore, transcriptome sequencing of the C. altivelis head kidney was conducted to explore the immune-regulating effects of the L. lactis combined with S. limacinum diet on C. altivelis. A total of 86,919 unigenes, annotated by at least one of the reference databases (Nr, Swiss-Prot, GO, COG, and KEGG), were assembly yielded by de novo transcriptome. In addition, 157 putative differentially expressed genes (DEGs) were identified between the L. lactis combined with S. limacinum group and the control group. For pathway enrichment, the DEGs were categorized into nine KEGG pathways, which were mainly related to infective diseases, antigen processing and presentation, digestive system, and other immune system responses. The findings of this study suggest that the L. lactis combined with S. limacinum diet can induce positive effects on the growth, immunity, and disease resistance of C. altivelis against V. harveyi. This study expands our understanding of the synergistic combinations of probiotics and prebiotics in aquaculture.


Assuntos
Bass/imunologia , Doenças dos Peixes/imunologia , Imunidade Inata/efeitos dos fármacos , Lactococcus lactis/química , Prebióticos , Probióticos/farmacologia , Estramenópilas/química , Adjuvantes Imunológicos/farmacologia , Animais , Bass/crescimento & desenvolvimento , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/imunologia , Vibrio/fisiologia , Vibrioses/imunologia , Vibrioses/veterinária
4.
Fish Shellfish Immunol ; 82: 296-303, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30125700

RESUMO

Lactic acid bacteria are a common group of probiotics that have been widely studied and used in aquaculture. In the present study, we isolated Lactococcus lactis HNL12 from the gut of wild humpback grouper (Cromileptes altivelis) and explored its probiotic properties. For this purpose, L. lactis HNL12 was added to the commercial fish feed. The results showed that HNL12 had high auto-aggregation ability and strong tolerance to simulated gastrointestinal stress. When C. altivelis consumed a diet containing 0 (control), 106, 108, or 1010 CFU/g HNL12 for four weeks, all of the groupers fed a diet with HNL12 had significantly increased percent weight gain (PWG), especially those fed with 108 CFU/g, which had a PWG of 231.45%. Compared to the control, fish fed with L. lactis HNL12 exhibited significantly increased survival rates following injection with Vibrio harveyi after one month. Immunological analysis showed that C. altivelis fed with HNL12 had (i) enhanced respiratory burst activity of head kidney macrophages, superoxide dismutase, acid phosphatase, and lysozyme activities of serum; (ii) an improved survival rate from 36% to 70%; and (iii) upregulated expression of a broad spectrum of immunity. Meanwhile, de novo transcriptome assembly yielded 89,314 unigenes, which were annotated by at least one of the reference databases (Nr, Swiss-Prot, GO, COG and KEGG). A total of 307 genes showed significantly different expression between the groups fed with or without added HNL12. GO and KEGG enrichment analyses of the significantly different expression gene categories and pathways were related to infectious diseases, antigen processing and presentation, and other immune system responses. These results indicate that L. lactis HNL12 is effective for enhancing the growth, immunity, and disease resistance of C. altivelis; this study also provides insight into the use of probiotics for commercial applications.


Assuntos
Bass/imunologia , Resistência à Doença/fisiologia , Doenças dos Peixes/imunologia , Imunidade Inata/efeitos dos fármacos , Lactococcus lactis/química , Probióticos/farmacologia , Animais , Bass/crescimento & desenvolvimento , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Vibrio/fisiologia , Vibrioses/imunologia , Vibrioses/veterinária
5.
Fish Shellfish Immunol ; 67: 55-65, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28554837

RESUMO

The classical major histocompatibility complex class I (MHC I) plays a vital role in the immune system. In this study, we cloned and identified golden pompano (Trachinotus ovatus) MHC Iα (Trov-MHC Iα), which encodes 351 amino acid residues including a leader peptide, α1, α2, α3 domain, a transmembrane region and a cytoplasmic domain. Twenty six different sequences, which encoded various numbers of amino acid residues ranging from 348 to 354, were obtained from 12 individuals. Highly genetic polymorphism was found in the Trov-MHC Iα, especially in the α1 and α2 domains. Meanwhile, in the α1 and α2 domains, 21 positive selected positions were revealed by site models, indicating the diversity of Trov-MHC Iα may be mainly generated by positive selection. Moreover, quantitative real-time reverse transcription PCR and western blotting analyses demonstrated that Trov-MHC Iα was ubiquitously expressed in the nine tested tissues and more highly expressed in intestine, head kidney, gill, and spleen. In the head kidney and spleen, Trov-MHC Iα was significantly upregulated under LPS or poly I:C stimulation. The results of this study provide valuable insight into molecular polymorphism, evolutionary mechanism, expression and function of MHC Iα in the immune system of golden pompano.


Assuntos
Proteínas de Peixes/genética , Expressão Gênica , Genes MHC Classe I/genética , Imunidade Inata , Perciformes/genética , Perciformes/imunologia , Polimorfismo Genético , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Lipopolissacarídeos/farmacologia , Perciformes/metabolismo , Filogenia , Poli I-C/farmacologia , Alinhamento de Sequência/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...